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ABSTRACT
For a positive constant )\ we denote by K(A) = {£(z)} the class of
function f(z) which are reqular and univalent in |z| < A and map this

circle on a convex domain. In 1928 G. Szegd [3) proved the

o«
Theorem 1. If f£(z) = ) cvzv € X(1), then all its sections

0
t v 1
sn(Z) - g c“z e K(Z) EE_ n= 1,2'000 .

An evident consequence is

Corollary 1. Since the geometric series

folz) = 1 z° € K(1)
0
we have

T v 1
). z EK(Z‘), (n = 1,2,00-)
0

and therefore, on replacing z by 2z/4, we have

J;'zv @ K(1) for n = 1,2,.04 &

(=X ]+
'S

In the present vaper we prove directly Corollary 1, and derive from it Szegd's
Theorem 1. This 1s done by appealing to Theorem 2 which was conjectured hy
Polya and Schoenberg (1] in 1958, but only proved in 1973 by St. Ruscheweyh

and T. Sheil-Small [2].
AMS (MOS) Subject Classifications: 30C20, 52A10

Key Words: Convexity, Geometric Function Theory

Work Unit Number 6 (Miscellaneous Topics)
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SIGNIFICANCE AND EXPLANATION

T
" There is a fine interplay between two fundamental notions of geometry:

Convexity and Conformal Mapping. The subject belongs to Geometric Function
Theory. In 1928 Gabor Szegd showed that if a power series converges in the
unit circle |z| < 1 and maps it onto a convex domain, then all its finite

sections map the circle |z| < % “onto convex domains. The present paper

shows that Szegd's theorem reduces to a study of the finite sections of the

" ,.':/,l’; g 2 ; ) P I 'L/ ’/_+ T‘l. : s L [] J’“" o
; A

1 +:{%z f:'\lizz# ces = ¢ el
(o Y SNy i & )

i ' i’

geometric series

The main tool is a result conjectured in 1958 by Polya and Schoenberg, but

only established in 1973 by St. Ruscheweyh and T. Sheil-Small.
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;, ON A THEOREM OF SZEGO ON UNIVALENT CONVEX MAPS OF THE UNIT CIRCLE .

. - 4

‘ J I. J. Schoenberg '
€ .

b~ 1. INTRODUCTION. There is an interesting interplay between two fundamental notions of o

i S :

_{:- geometry: Convexity and Conformal Mapping. The subject belongs to Geometric Function :

- I
N Theory. We use the following notation: If r > 0, we denote X(r) = {f(x)} the class of 4

*.' functions f£(z) which are univalent in the circle |z| < r, and map it onto a convex !
-'\\ 1
N domain. X
o
& :
:-: In 1958 Polya and Schoenberg conjectured that for r = 1 the class X(1) form a
" -

semi-group with respect to Hadamard multiplication of power series. This was established

o
e in 1973 by St. Ruscheweyh and T. Sheil-Small in [2] by the following ;

WoR] 1
{‘ Theorem 1. (Ruscheweyh and Sheil-Small). If )

L

':_' 4

" v v S v

Aoa Jaz ex(1) and bz e x(1)

.\: 0 0 4

) " then "
: :

A
.Q - p
YO Tapz'exm . ;
o YV !
- :
. 4

& . Before we pass to the work of Szegd, let us use Theorem 1 to establish a simple and

)
oty well known
n¢

Proposition. If

.
LS Y

: o

) (1.1) £(z) ~J a2’ ex(n)
X 0

e and 0 < A <1, then

T, -

T (1.2) £lz) =) a\’zv e X(}) .
~ 0
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u Proof: We start from the geometric series :2-"
Al - e
K, v -
J (1.3) folz) = J 2 =3 ex(m , X
-z W
: 0 ne
g v
because it maps |z| < 1 onto the half-plane Re z > %- However, w = fg(z) = 1/(1 ~ z) i
M ~od
N clearly maps |zl < A onto a circle, and so _.‘i
: .
X J2°exm) . .
y 0 1}
|
Replacing z by Az, we obtain that
X pd A\
o (1.4) 122" ex(n) .
P, 0
X
X However, from (1.1) and (1.4), by Theorem 1 we obtain
: T v v oy
« Y 2a z ex(1), s
1y 0 v
W\
MYy -
: or, replacing Az by z, we have o
4
» - Dt
. Vaz exth), J
] v
- 0
: which is the desired conclusion {1.2). . .
) L]
g Remark. Our derivation of the conclusion {1.2) from the special case of the geometric :::
series (1.3) justifies Polya's statement that within the class K(1) the geometric series "
o
Pl
) {1.3) "sets the fashion" (in German: "tonangebend”). oy
u' "-P
X Szeqd's question: If Aol
- 7
), oy o
- v -
(1.5) £(z) =] cz ex(N),
0
what can we say about its sections “
n .
v 0
sz = ) oy’
v=0 .
A A
N In 1928 G. Szegd [3, Satz II', page 204] established —s
~ N
h ‘h
L] --
. o
. o
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Theorem 2 (Szegd). If (1.5) holds, then

o v 1
(1.6) Sp(z) =l c,z e "(Z) for n = 1,2,..0 .
0

Using Theorem 1 we will show in §2 that we can reduce Theorem 2 to the queistion

concerning the section of the geometric series

n

f(z)-1+lz+... +—‘—z L YT
0 4 n
4
Theorem 3. Let ) be a constant satisfying
0<A <t
If (1.5) holds, then
° v
(1.7 Sy(z) =) c 2’ €K(A) for all n 2 m(\) ,
0
where
’ (1.8) m(A\) is the least integer such that (1.7) holds.
Evidently

(1.9) m(A) = 1 if Xg-}.

by Theorem 2. It is equally evident that
a (1.10) X1 < Xz implies that m(X1) < III(Xz) '
'-: for if s (z) e K(lz), then also §.(z) e K(X1)-
t"‘ The main difficulty in Theorem 3 is an explicit determination of m(A), if A >
=y and we will do that for the value
& (1.11) =3
L only, and find that
[l

A 1

v (1.12) m(3) =4

v
.

We state this result as
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Theorem 4. If

(1.13 £lz) = § c 2z’ e K(1)
0
then
e v 1
(1.14) S,(z) = g c,z eK(3) for n24,

but not necessarily for n = 2 or 3.

In establishing Theorems 3 and 4 I greatfully acknowledge the help of Fred W. Sauer,

of the Computing Staff of the Mathematics Research Center.

2, THE NEW APPROACH TO SZEGO'S THEOREM 2. Since evidently

o

(2.1) £a02) = ] 2 € K(1)
0

we conclude by Szegd's Theorem 2 that

n
(2.2) Z z’ e K(%) for all n = 1,2,.¢s o«
0

Replacing z by 2z/4 we may restate (2.2) as

Corollary 1. We have

1l z“ e K(1) for n=1,2,... ,

(0)
®n v

(2.3) (z) =

o3
FS

The new approach to Theorem 1 is to establish Corollary 1 directly. If now

(2.4) £(z) = ) cvz“ e x(1)
0

is an arbitrary element of K(%) we arque as follows: Applying Theorem 1 to (2.3) and
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(2.4) we conclude that

1 v
—vcvz e K(1)

| Rat-}

. v=0 4

and therefore

n v 1
{2.5) ! e,z ex(7) for n=1,2,...,
v=0

which is the conclueion (1.6) of Theorem 2.

Szeg3's theorem is therefore made to depend on the proof that all sections of the

geometric series

-
1 v

(2.6) fz) = <z , Uzl <&
04

are in X(1).

. 3. A _DIRECT PROOF OF COROLLARY 1. We begin with
Lemma 1. All sections

? 1 v

(3.1) t(z) =] <z (n=1,2..)
04

are univalent in the closed unit circle U = {lz] ¢ 1}

Proof: We are to show that
(3.2) 1zl & 1, |22| <1, zq4# 2z, imply that f (zy # f(z,) .

Observe that

n
(3.3) 1£,(29) = £ (2501 = 1] L= (=) - 2]
1

4\)
2 2 n=1 n=2 n-1
- + + + + oaee
Bt W SR PSS Mt SR Bt o Mt SR N M i)
. 4 4 2 n-1
a a
. -5-

RN\

.|




Py
*a%s%

 am s 4w

- etataVava s a

"R

ave’s’s L LAY,

PO

y s W

.

w4

gt YOCAARPAN |- 4t

However, by (3.2),

n-1 n=1
+ P
5tz z, * 2z 2.3 n 7 3n+4
| e + — L¢3+ e D2 3022,
40 4 4“ 904“

the last equality being easily obtained by summation, or by complete induction. The last

member being < 1. We obtain from (3.3) that

lz, = 2,1 |
1 2 ? 3n + 4 1 2
£ (29) = £.(2x)) > ——— 11 - (g~ =) =

and (3.2) is established.

Lerma 1 shows that the polynomial (3.1) maps the circle |z| = 1 onto a closed Jordan

curve C . Separating real and imaginary parts by
(3.4) £.0e1®) = x () + 1y (t)

we obtain for C, the parametric representation

(3.5) Cp: x = x,(t), v=y,lt) (0 gt g2m) .

Wishing to study its curvature .
1 xl L. 'xll

(3.6) = XY “¥X
R (x'2 + Y.2)3/2

we first establish

Lemma 2. Defining

(3.7) ‘rn(t) = x,"(t)y;(t) - y,'l(t)x;(t) .
we have
(3.8) Tn(t) 20 for -F L t<w, and n = 1,2,000 &

Proof: From (3.1) and (3.4) we have

L T S N

n
cos at in at ~
(3.9) xn(t) =1+ X = yn(t) = Z E—nu— ..
a=1 4 a=1 4 LR
oA
and (3.7) becomes
_6-
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n _ n_
-Z 4% sin at -z 4 882 cos Bt
1

n n 1
T (t) = = .
i Yx.n *n T ,-a v 8.2
Y 4% cos at -l 4 "B sin Bt
1 1

By splitting the columns we rewrite the determinant as a sum of n2 determinants obtaining

n n

'rn(t) = Yy 3 4-‘!—8082(8111 at sin At + cos at cos Bt) ,
a=1 B=1
and finally
§ 082
(3.10) T (t) = ) cos(a - B)t ,
n a,B=1 4a+8

which is a cosine polynomial of order n - 1,
Establishing the non-negativity of a cosine polynomial is in general a difficult

problem. Fortunately, in our case it is easy due to the structure of the infinite matrix

2
af
(3.11) |4°+8

,c,ﬂ = 1,2,400

of the coefficients of all (3.10). For instance, we obtain TJ“") as the sum of the

elements of the 3 x 3 matrix (3.11) provided with appropriate éo-ine factors:

. 2 2 2

1.1 . .
- + § cos t + 1—i— cos 2t

4 4 4

2 2

Tylt) =4 + 2'; cos t + 33%— + Ms— cos t

4 4 4

2 .22 .32

+ 2 °os 2t + 5 Cos t + 6 .

4 4 4

Since T,(t) is a cosine polynomial, we may restrict t to 0 Lt

-7~
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W&
1y}
‘.
~
A
Y For n = 2 (3.8) presents no difficulty since
Z 3
” (3.13) To(t) = 32 (1 + cos ¢t) ,
::f which is non-negative. 1 owe to Fred Sauer the positivity of Ta(t), T4(t) and Tglt)
&
> who provided the following (positive) minima
L4
= min T4(t) = .01309
t
min T,(t) = .01221
4
Z t
?
> (3.14) min Ts(t) = ,01600 .
M v
~ I claim that the last result (3.14) allows us to show that
Y
“~ (3.15) min Tn(t) >0 for all n 2 6,
.‘ t
A
F -
but this requires some elementary Algebraic Analysis.
~: The sum of all elements of the infinite matrix (3.11) is
283
L4 T a 2 T a T 82
N (3.16) ] 2.1 )5 5.
a;B=1 4 a=1 4~ B=1 4
f.‘ From this sum we subtract the sum of the elements of the principal n x n minor of (3.11), -"
- and define the new sequence s
" ._'1
| T a v 82 Tay 82 LJ
. (3.17) s 0EIH -0R0 5. |
5 14 14 14 14 -
" "
(] >,
~ n v
A By iteration of z(d/dz) applied to 2 (z/4) we obtain the identities ‘.
b+ 1 Td
(3.18) 'Z‘v__4.4“-3n-4 §ﬁ=20.4“-9n2-24n-2o
. R ' R
-« 14 9.4" 14" 27.4"
~ -
N and letting n 4 ® we obtain By
. A
. -
I‘. .
o -8~ -
] - .
»
.
.. l:-
- s
s
[} -~
NS O S R A R R R S S S -
’ > Q-':- "\’ <", .."-":\f <.':~‘.\‘:o MU -

LR
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(3.19)

-~ 8
[¥]
~

[ IQ
-]

(]
Old
~
_.Vs

Now the sequence (3.17) may be explicitly written as

4 20 4.4"-3n-4 20.4" - 9n% - 24n - 20
(3.20) Nn =9 27" n ‘ n ’
9.4 27.4

which yield the numerical values

N, = .0216009195
and
(3.21) Ng = .0073673303 < .0074 .
I claim that this last inequality completes our proof of Lemma 2: Indeed, from (3.21)
and the definition (3.17) of Ng we conclude that all Tn(t) are positive for all
n > 5, for in view of the relations (3.14) and (3.21) w have for n > 5 and all real ¢t

Tn(t) > Ts(t) = Ng > m:n Ts(t) - Ng > .0160 - .0074 = .0086 > 0 .

4. PROOF OF THEOREM 3. Our previous discussion makes it clear that it suffices to

consider the geometric series

o
vV Vv 1 -1
(4.1) f(z)-(i,xz-=1_XZ (lzl <2 ),
and prove
lemma 3. For its partial sums we have
T v
(4.2) Sp(z) =] Az eR(1) for all n 2 m(d),

0

where

(4.3) m(A) is the least integer such that (4.2) holds.
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o

Proof of Lemma 3. Notice that

4
I-
(4.4) £let) =« —1— = x(t) + 1y(t)
K 1 = )e
traces out a circle C having the interval of reals (1/(1 + 1), 1/(1 = X)] as diameter
:: and therefore the radius
- (4.5) R = —2 7
-, 1 =2
T Setting
" (4.6) sp(elt) = x (v) + 1y (v) ,
i‘ and observing that |z| = 1 is well within the circle of convergence of (4.1), it should
:{ be clear that the real psriodic functions
x,(t), yo(t), x(t), y(t) N
A are regular in a neighborhood of the real t-axis. Also that y,{t) and y,(t), as well 4
n-" \1
o as their derivatives, converge uniformly to the corresponding derivatives of x(t) and ::
y(t), respectively. It follows that the closed curve C, = (x,(t), y,(t)) converges to :
the circle C and that its curvature . i
L] L] 1] 1 ] '-'
xn(t)yn(t) - yn(t)xn(t) o
v ip)2 114y243/2 N
(xn(t) + yn(t) ) :3
Y
converges uniformly in t, as n + ®, to the curvature 1/R of C. This establishes
-
o
A Lamma 3.
: The determination of m()), satisfying (4.3), is difficult and will be solved for
A =1/3 only.
. S. THE CASE A = %: PROOF OF THEOREM 4. As an analogue of lLemma 1 we should prove that

the image of |z| = 1 by

1
<z (=200
3

o0

(5.1) £,(z) =
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are all simple closed curves. However, our simple proof of Lemma 1 does not generalize.,

Rather we consider

n
1 zv __:_ 1 (z/3)

(5.2) w= fn(z) -1 = v 1= (z/3)

- 1y

w

and show that it maps z = e1t into a curve which is star-shaped with respect to the
origin., This requires two facts: 1. That as t varies from -x to +x, the argument
of the function (5.2) increases by 2. 2°. That we have

(5.3) Im(%g w) >0 for all t .

However, we omit the tedious calculations.

We rather pass to considering the curvature of the curve; here matters are very close
to those of §3 and obtained from them by replacing % by %. We shall also use the game
notations.

Setting
(5.4) g6l = x (8) + 1y (),
we have as an analogue of Lemma 2 the

Lemma 3. Defining

(5.5) Tn(t) - xﬂ(t)y;(t) - y;(t)x;(t) P
we have
(5.6} Tn(t) >0 for =¥ <t <7 and n 2 4,

but not for n =2 and n = 3.

Proof: For the analogues of (3.10) and (3.17) we find

P
(5.7) T (t) = cos(a -8t
n a;B=1 3u+e
and
® @ 2 n 2
. 8 - a 8
(5.8) o= (TN 5 - Q505
noy g7 P 13%°9 38
and explicitly
—11-
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L%t
_r_s_t

L
LR '}

L.

ml_ 2 - 3)(3"”

b nz = 3n - 3) .

9 3
(5.9) N == - .
n 8 "eq "2
Rounding off Fred Sauer's values to six decimal places, we have

min Tz(t) = ~,012346
t

min T3(t) = -.002057

t

min T,(t) = 004268
t

min Tg(t) = 013733
t

min Ts(t) = ,014480, N6 = ,036836
{5.10) min T7(t) = ,017663, N7 = ,015400 ,
The first two minima being negative shows that the curves C, = (x,(t),y,(t)) and

Cy = (x3(t),y3(t)) are not convex. However, from (5.10) we can conclude that (5.6)

holds: From the above data we see that T,(z), Tg(t), Tg(t), and T5(t) are everywhere
positive, Now (5.10) show that if n > 7 then
To(t) 2 To(t) - Ny 2 mtn T,(t) - N, > .0176 - .0155 = .0021 > 0 .

Thus T,(t) 20 for all t and n = 4,5,..., proving Theorem 4.
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ABSTRACT (cont.)
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~. Theorem 1. If f(z) = Y ¢,z € K(1), then all its sections
o - 0

n

Cag v 1
:::’: Sn(z) = g Cvz e K(4) fOl‘ n= 1,2,... .
2 -
s An evident consequence is

" Corollary 1. Since the geometric series
\l
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. .
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Ay £o(z) =1 z € K(1) :
) 0
&2 we have

T o 1

'-:" z Zz e K(z’)l (n = 1,2,..0) f
~'.. 0 o)
o meY .
) .
o and therefore, on replacing z by z/4, we have #
> n
- 1 v k
i: z 5 2 e K(1) for n=1,2,.00 & 1
e 04
o
;: In the present paper we prove directly Corollary 1, and derive from it Szegd's

. Theorem 1. This is done by appealing to Theorem 2 which was conjectured by .

- Polya and Schoenberg [1] in 1958, but only proved in 1973 by St. Ruscheweyh ’
;: and T. Sheil-Small [2].
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